Curriculum Progression Pathway for Mathematics

Subject Intent: To give students the opportunity to become mathematical problem-solvers.

Why is the study of mathematics important?

The study of mathematics is important as it provides us with a way of building our problem-solving skills and resilience. Mathematics also enables learners to develop their critical thinking and logical skills - both of which are useful in real life.
Although many aspects of mathematics are abstract, all aspects require application of knowledge to familiar and sometimes unfamiliar problems.

What skills will the study of mathematics teach you?

- Problem-solving
- Resilience
- Independent study skills
- Retention
- Application of formulae

What will you know and understand from your study of mathematics?

- Number - money skills, four operations
- Algebra - substitution, use of formulae
- Probability - likeliness of events and risk-taking
- Statistics - data handling and displaying data
- Geometry - shapes and spatial awareness
- Ratio and proportion - recipes and percentages

How does your study of mathematics support your learning in other subjects?

In geography, students need to be able to calculate averages and the range, they also need a strong knowledge of representing data.
In science, students need to be able to substitute values into formulae, rearrange equations and display data.
In technology, students need to be able to calculate the area and perimeter of 2D shapes. They also need to be able to calculate the volume of 3D shapes and use this to calculate how much of each material is needed to develop their project.

In art, students need spatial awareness.

How can you deepen your understanding of mathematics?

- Read mathematical books in the maths library (E21).
- Take part in the UKMT maths challenge.
- Mathswatch.
- Hegarty Maths
- Participation in AMSP events or other cultural capital experiences.

How can mathematics support your future?

Mathematics can support your future by helping you to develop your problem-solving skills. On a daily basis, we solve problems and often the solutions to these problems are not straightforward. This means that we need to be resilient and that we need to take the time to assess the problem and then determine the solution to the problem. Sometimes, we may be in a situation that requires a quicker decision - the logical thinking that we develop through studying mathematics will support us in being able to make decisions under pressure when needed.

At post-16 options, students can opt to take an A Level in Mathematics or Further Mathematics. There is also the option of Core Maths. Our GCSE curriculum aims to prepare students to be able to take these courses (where they meet the prerequisites).

Exam board used in Y10 \& Y11

Pearson Edexcel

CURRICULUM PROGRESSION PATHWAY					
	Year 7	Year 8	Year 9	Year 10	Year 11
Autumn 1	Analysing and displaying data 1.Mode,Median and range 2. Displaying data 3. Grouping Data 4.Averages and comparing data 5. Line graphs and more bar charts Number 1.Calculations 2.Divisibility and division 3.Calculating with negative integers 4.Powers and roots 5.Powers ,root and brackets 6. Multiples and factors	Number 1.Calculations 2.Divisibility and division 3.Calculating with negative integers 4.Powers and roots 5.Powers ,root and brackets 6.Multiples and factors Area and Volume 1.Area of triangles 2.Area of a parallelogram and trapezium 3.Volume of cubes and cuboids 4.2D representation of 3D solids 5. Surface area of cubes and cuboids 6. Measures	Indices and standard form 1.Indices 2.Calculating and estimate 3.Standard form Expression and formulae 1.Solving equations 2.Substituting with expressions 3.Writing and using formulae 4.Index laws and brackets 5.Expanding double brackets	Number 1.Calculations (F) 2.Decimal numbers (F) 3.Place value (F) 4.Factors and multiples (F) 5.Squares.cubes and roots (F) 6.Prime factors (F) 7.Number problems and reasoning (H) 8.Estimating (H) 9.HCF and LCM (H) 10.Calculating with powers(Indices) (H) 11.Zero, negative and fractional indices (H) 12.Powers of 10 and standard form (H) Algebra 1.Algebraic expressions (F) 2.Simplifying expression (F) 3.Substitution (F) 4.Formulae (F) 5.Expanding and factorising (F) 6.Using expression and formulae (F)	Multiplicative reasoning (F/H) 1. Percentages 2. Growth and decay 3. Compound measure 4. Distance, speed and time 5. Direct and inverse proportion Congruence, similarity and vectors (H) 1. Similarity and enlargement 2. Using similarity 3. Congruence 4. Vectors Trigonometry (H) 1. Accuracy 2. Graphs of the sine function 3. Graphs of the cosine function 4. Graphs of the tangent function 5. Calculating area and the sine rule 6. The cosine rule and 2 D trigonometric problems Construction, loci and bearings (F/H) 1. 3D solids 2. Plans and elevations

	Expressions, functions and formulae 1.Simplifying expression 2.Writing expressions 3.Substituting into formulae 4.Writing formulae	Statistics, graphs and charts 1.Pie charts 2. Using Tables 3.Stem and leaf diagrams 4.Comparing data 5.Scatter graphs 6.Misleading graphs	Dealing with Data 1.Planning a survey 2. Collecting data 3.Calculating averages 4.Displaying and analysing data 5.Presenting and comparing data	7.Algebraic indices (H) 8.Equations (H) 9.Linear sequences (H) 10.Non-linear sequences(H)	3. Accurate drawings 4. Scale drawing and maps 5. Construction 6. Loci and region 7. Bearings Quadratic equations and graphs (F/H) 1. Expanding double brackets 2. Plotting quadratic graphs 3. Using quadratic graphs 4. Factorising quadratic expressions 5. Solving quadratic equations algebraically
Autumn 2	Decimals and measure 1. Decimals and rounding 2. Length,mas s and capacity 3. Scales and	Expression and equations 1.Algebraic power 2.Expressions and brackets 3. Factorising expressions 4.One-step equations	Multiplicative Reasoning 1.Enlargement 2.Negative and fractional scale factors 3.Percentage change 4.Compound	Graphs and tables (F) 1.Frequency tables 2.two way tables 3.Representing data 4. Stem and leaf diagram 5.Pie charts 6.Scatter graphs 7.Lines of best fit	Perimeter, area and volume (F) 1. Circumference of a circle 2. Area of a circle 3. Semi circle and sector 4. Composite 2 D shape and cylinder 5. Pyramids and cone 6. Sphere and composite solids

				1.Fractions 2.Ratio 3.Ratio proportion 4.Percentages 5.Fractions, decimals and percentages	
Spring 1	Probability 1.The language of probability 2.Calculating probability 3.Experimental probability 4.Expected outcomes Ratio and Proportion 1. Direct proportion 2. Writing ratio 3. Using ration 4. Ratio, propor tion and fractions 5. Proportion	Decimals and ratio 1.Ordering decimals and rounding 2.Place value calculations 3.Calculations with decimals 4.Ratio and proportion with decimals	Sequences, Inequalities, equations and proportion 1.Nth term of arithmetic sequences 2.Non-linear sequences Inequalities 3.Inequalities 4.Solving equations 5.Proportion	Angles (F) 1.Properties of shapes 2.Angles in parallel lines 3. Angles in triangles 4.Exterior and interior angles 5.Geometrical problems Averages and range (F) 1.Mean and Range 2. Mode, median and range 3.Types of Averages 4.Estimating the mean 5.Sampling Perimeter, area and volume (F)	Congruence, similarity and vectors (F) 1. Similarity and enlargement 2. Using similarity 3. Congruence 4. Vectors Algebra (F) 1. Graphs of cubic and reciprocal functions 2. Non linear graphs 3. Solving simultaneous equations graphically 4. Rearranging formula 5. Proof Quadratics and Graphs 1. Solving simultaneous equations

	and percentages	1.Quadrilaterals 2.Alternate angles and proof 3.Angles in parallel lines 4.Exterior and		1.Rectangles, parallelograms and triangles 2.Trapezia and changing units 3.Area of compound shapes 4.Surface area of 3D solids 5.Volume of prisms Angles and Trigonometry (H) 1.Angles and properties of triangles and quadrilaterals 2. Interior angles of a polygon 3. Exterior angles of a polygon 4.Pythagoras Theorem 5.Trigonometry	graphically 2. Representing inequalities graphically 3. Question equations 4. Using quadratic graphs 5. Cubic graphs 6. Using iteration to solve equations Circle Theorems (H) 1. Radii and chords 2. Tangents 3. Angles in circles 4. Applying circle theorem 5. Algebra 6. Rearranging formulae Algebraic fractions 1. Simplifying algebraic fractions 2. Proof 3. Surds 4. Solving algebraic fractions
Spring 2		Calculating with Fractions 1.Ordering	Circles, Pythagoras and Prisms	Graphs 1.Linear graphs (F / H) 2.Graphing rates of change (F/H) 3.Real Life graphs (F/H)	Vectors and geometric Proof (H) 1. Vectors and vector notation 2. Vector arithmetic

		fractions 2.Adding and subtracting fractions 3.multiplying fractions 4.Dividing fractions 5.Calculating with mixed fractions	1. Circumference of a circle 2.Area of a circle 3.Pythagoras' theorem 4.Prism and cylinders 5.Error intervals and bounds	4.Line segments (F/H) 5.Quadratic graphs (F/H) Cubic and reciprocal graphs(F/H) Transformations 1.3D solid (F/H) 2.Reflection and rotation (F/H) 3.Enlargement (F/H) 4.Combination of different transformations (F/H) 5.Scale drawings (F/H) and bearings (H) 6. Construction (F/H) 7.Loci (F) Area and Volume (H) 1.Perimeter and area 2.Units and accuracy 3.Prisms 4.Circles 5.Sector of a circle 6. Cylinders and spheres	3. Parallel vectors and collinear points 4. Solving geometric problems
$\begin{aligned} & \text { Summer } \\ & 1 \end{aligned}$	Lines and angles 1.Measuring and drawing angles 2.Lines, angles and triangles	Straight line graphs 1.Direct proportion graphs 2.Gradients	Graphs 1.Using $y=m x+c$ 2.straight line graphs 3.Simultaneous	Ratio and Proportion (F) 1.Writing ratios 2.Using ratio 3.Ratio and measure 4.Comparing using ratio	

				5. Conditional probability 6. Venn Diagram and set notation	
$\begin{aligned} & \text { Summer } \\ & \mathbf{2} \end{aligned}$	Transformations 1.Congruence and enlargement 2.symmetry 3.Reflection 4.Rotation 5.Translating and combined transformations	Percentages, decimals and fractions 1.Fractions and decimals 2.Equivalent proportion 3.Writing percentages 4.Percentages of an amount	Comparing shape and trigonometry 1.Congruent and similar shapes 2.Ratio in a triangle 3. The tangent ratio 4.The sine ratio 5.The cosine ratio 6.Using trigonometry to find angles	Probability (F) 1. Calculating probability 2. Two events 3. Experimental probability 4. Venn diagrams 5. Tree diagrams	

